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REMARKS ON WEIGHTED HARMONIC BERGMAN
FUNCTIONS ON HALF-SPACES

HEUNGSU YI

ABSTRACT. On the setting of the upper half-space H of the Euclidean n-space,
we first estimate the size of partial derivatives of any order for functions in
weighted harmonic Bergman spaces and then we show that any partial deriv-
ative of weighted harmonic Bergman function behaves nicely on any proper
half-space contained in H. Also, we show that if any partial derivative of a
given weighted harmonic Bergman function u vanishes on H, then so does u.

1. INTRODUCTION

For a fixed positive integer n > 2, let H = R"~! x (0, c0) be the upper half-space.
We write point z € H as z = (', z,) where 2’ € R"! and 2, > 0.

For « > -1, 1 < p < o0, and Q C R", let b2(Q2) denote weighted harmonic
Bergman space consisting of all real-valued harmonic functions v on Q such that

1/p
[ ( / |u<z>|Pdva<z>) < oo,

where dV,(z) = dist(z, 0Q)* dz, dist(z, 9Q) denotes the Euclidean distance from z
to the boundary of Q and dz is the Lebesgue measure on R". We let b2 = 02 (H).
Then we can check that dV,(z) = 22 dz on H.

Harmonic Bergman spaces are not studied as extensively as their holomorphic
counterparts and many results on Bergman spaces has been done for bounded
domains. [4] and [9], for example, are good references for holomorphic Bergman
spaces. bf(Q) is studied in [8] and [5] on the setting of upper half-space and bounded
smooth domain in R", respectively. b2 (B) where B is the open unit ball in R" is
studied in [3]. Weighted harmonic Bergman functions on H were studied in [6] and
[7].

In this paper we first estimate the size ol partial derivatives ol any order [or
functions in weighted harmonic Bergman spaces. Next, we show that if u € b2,
then zﬁ/ P DAu(z) belongs to LP(Q) for any multi-index /3 , where € is a proper half-
space contained in H. Finally, we show that if u € b2 and DPu vanishes on H for
some multi-index ,’;, then u also vanishes on H.

Constants. Throughout the paper we use the same letter C to denote various
constants which may change at each occurrence. The constant C' may often depend
on the dimension n and some other parameters, but it is always independent of
particular functions, points or parameters under consideration. For nonnegative
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quantities A and B, we often write A < B or B 2 A if A is dominated by B times
some inessential positive constant. Also, we write A~ B if A < B and B < A.
2. MAIN RESULTS

We first estimate the size of partial derivatives of a function u € b%,. To do so,
we need one lemma called Cauchy’s estimates for harmonic functions. (See [1] for
details and related facts.)

Lemma 2.1. Let 5 be a multi-index. Then we have

z M
B, <
\DPu(z)| < NE]

for all functions u harmonic and bounded by M on B(z,r).

For the rest of this paper, we fix & > —1 and p € [1,00).

Proposition 2.2. Let z € H and let u € V%, Ifg is a multi-index, then

_ 1 . 1/p
DA S — Peed :
’ U(Z)‘ ~ zlf|+(n+a)/l’ (,/B(z,zn/Q) |U(<)‘ CTL C)

Proof. Fix z € H and let w € B(z, z,/5). Apply the volume version of the mean-
value property to a harmonic function u on B(w, w,/5) Then we see from Jensen’s
inequality that

p
1

_— d

V(B(w,wn/S)) /B(w,wn/s) U(C) ¢
1 P

. S— d

< V) /B B GIRE

1 » G2

~— Q)P dc.

wy B(w,w, /5)

ol =

1 /
= —a [u(O)[P¢ dC,
'w:LL+ B(w,wny/5) "

because (,, ~ w, on B(w,w,/5).
Note that 4z,/5 < wy, < 62,/5, because w € B(z, z,,/5). Thus, w, ~ z, and

B(w,wy/5) C B(z, 2,/2).

Therefore, we have

1 1/p
< Pro
‘U(w)‘ ~ z7(1/n+u)/P </B(z,z,,/2) |u(<)| Cn dC) .

Then we see from Lemma 2.1 applied to a harmonic function u on B(z, z,,/5)
that

- 1 . 1/p
DP S — Pexd
D5 S ( [, e <> ,

as desired. Therefore the proof is complete.



Remarks on weighted harmonic Bergman functions on half-spaces

From Proposition 2.2, we know that

[l
"U,(Z)‘ S—‘ Z(n-‘r(v)/p :
n

Thus, point evaluation is a bounded linear functional on 0% and convergence in
b2 -norm implies the uniform convergence on each compact subset of H. Therefore
b? is a Banach space with b2-norm.

Let Hs = {z € H| z, > ¢} for 6 > 0. If u € b2, then we know from the next

proposition that zn/ P Dﬁu behaves nicely on any proper half-space contained in H
for any multi-index [‘3.

Proposition 2.3. Let u € b2 and let f(z) = zg/pDE'u(z) onH. If 6 > 0 and § is
any multi-index, then f € LP(Hg).

Proof. Let z € Hs. Then we know from Proposition 2.2 that

- 1 1/p
Dfu(z)| S ———— / w(Q)|PC¥d¢ .
’ ( )‘ Zlﬁ3|+(n+a)/p < B(2,2n/2) | ( )‘ n

Therefore we have

10, = / IDPu(a)p 22 dz

Z'CY
[ [ worca—ia
H6 B(z, z,,/2) LPIBlnte

Sl @ ¢ dz,
B(z, zn/2) n

()plb’l H;

because z, > 0. Let

XB(z,2,,/2) (C) = {

Notice that if ¢ € B(z,2,/2), then z, =~ (, and z € B((,(,). Therefore we get
from Fubini’s theorem that

oo »
1B S 2 [ 00 (e 20(O)

1 " a
: Pkl /H ./Ha— (O xB¢.c0(2) i—gdz g,
1
e pl8l /H oF </H XB(¢.cn) (2 )dz) g" dc,
! o Nl
s o718 /H [u(O)IP¢r d¢ = IR

[[u

1 if ¢ € B(z,2,/2)
0 otherwise.

Hence

Hullon
5181
and the proof is complete. O

Il e cees) S

’

Before we state the next theorem, first note that if f € LP(Hy) for some § > 0
and f is independent of the j*" coordinate variable for some j € {1,2,...,n}, then
f =0 on Hs. We see this easily by Fubini’s theorem. Unlike the case of bounded

411



412

H. Yi

domains, the following result shows that if u € b%, and DPuy vanishes on H for some
multi-index 3, then u also vanishes on H.

Theorem 2.4. Let u € b2, and let [;” be a multi-index. Then DPu =0 if and only
if u=0.
Proof. One direction is clear. Suppose DFy = 0. We show u = 0 by induction on
| E| Note that there is nothing to prove if | B | = 0 We assume this has been proved
for any multi-indices of order less than or equal to m > 0.

Let j € {1,2,...,n} and let f be a multi-index satisfying | B | = m. Now suppose
that

D;DPu=0. (2.1)

Note that (2.1) implies that DAy is independent of the j* coordinate variable.
Fix z € H and we choose 0 < § < z,. Then we know from Proposition 2.3 that

f € LP(Hy), where f(z) = zg/pDEu(z).
Suppose that j = n. Because DAu is independent of the n'" coordinate variable
and f € LP(Hy),

gee

||f||’£p(H6) = / |Dﬂu(z)‘pdz'/ 28 dzy, < o00.
JoH s

oo
/ zo dzp, = 00,
)

since @« > —1. Therefore, we have Dfy = 0 on H;s. Now, assume that j =
{1,...,n—1}. Then D;f = zﬁ/ijDﬁu = 0. Therefore we know from the remark
above that f = 0 and so D%u = 0 on Hy. In particular, D%u(z) = 0. Because

z € H is an arbitrary point, D54 =0 on H. By our induction hypothesis, we get
u = 0. Therefore the proof is complete.

Note that

O
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